逻辑存储结构

image-20230604155723066

表空间

表空间是InnoDB存储引擎逻辑结构的最高层, 如果用户启用了参数 innodb_file_per_table(在
8.0版本中默认开启) ,则每张表都会有一个表空间(.ibd文件),一个mysql实例可以对应多个表空 间,用于存储记录、索引等数据。

段,分为数据段(Leaf node segment)、索引段(Non-leaf node segment)、回滚段 (Rollback segment),InnoDB是索引组织表,数据段就是B+树的叶子节点, 索引段即为B+树的 非叶子节点。段用来管理多个Extent(区)。

区,表空间的单元结构,每个区的大小为1M。 默认情况下, InnoDB存储引擎页大小为16K, 即一 个区中一共有64个连续的页。

页,是InnoDB 存储引擎磁盘管理的最小单元,每个页的大小默认为 16KB。为了保证页的连续性,

InnoDB 存储引擎每次从磁盘申请 4-5 个

行,InnoDB 存储引擎数据是按行进行存放的。

在行中,默认有两个隐藏字段:

  • Trx_id:每次对某条记录进行改动时,都会把对应的事务id赋值给trx_id隐藏列。
  • Roll_pointer:每次对某条引记录进行改动时,都会把旧的版本写入到undo日志中,然后这个 隐藏列就相当于一个指针,可以通过它来找到该记录修改前的信息。

架构

下面是InnoDB架构图,左侧为内存结构,右侧为磁盘结构。

image-20230604160755179

内存结构

主要分为这么四大块儿: Buffer Pool、Change Buffer、Adaptive Hash Index、Log Buffer。

Buffer Pool

InnoDB存储引擎基于磁盘文件存储,访问物理硬盘和在内存中进行访问,速度相差很大,为了尽可能 弥补这两者之间的I/O效率的差值,就需要把经常使用的数据加载到缓冲池中,避免每次访问都进行磁 盘I/O。

在InnoDB的缓冲池中不仅缓存了索引页和数据页,还包含了undo页、插入缓存、自适应哈希索引以及InnoDB的锁信息等等。

缓冲池 Buffer Pool,是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增 删改查操作时,先操作缓冲池中的数据(若缓冲池没有数据,则从磁盘加载并缓存),然后再以一定频率刷新到磁盘,从而减少磁盘IO,加快处理速度。

缓冲池以Page页为单位,底层采用链表数据结构管理Page。根据状态,将Page分为三种类型:
• free page:空闲page,未被使用。
• clean page:被使用page,数据没有被修改过。
• dirty page:脏页,被使用page,数据被修改过,也中数据与磁盘的数据产生了不一致。

如果大部分需要修改的数据页不存在Buffer Pool中,那么从磁盘读取进缓存的IO是无法避免的,但是如果每一个修改都立刻写回那么将会有许多磁盘IO、降低MySQL的性能,所以Buffer Pool的数据页是按一定频率刷磁盘的。

Change Buffer

更改缓冲区(针对于非唯一二级索引页),在执行DML语句时,如果这些数据Page不在Buffer Pool中,不会直接操作磁盘,而会将数据变更存在更改缓冲区 Change Buffer 中,在未来数据被读取时,再将数据合并恢复到Buffer Pool中,再定期刷磁盘,而不是每次刷磁盘,能够降低磁盘IO,提升MySQL的性能。(合并写操作,如果更新频繁且没有changebuffer, 那么基本上每次刷盘都要将修改的数据刷回磁盘,这样大量的离散IO将影响性能,而有了changebuffer,只有在读取时才合并到bufferpool再定期刷盘)

如果要修改的数据页已经在Buffer Pool中了就直接在Buffer Pool操作,只有一次内存操作。添加Change Buffer主要是为了解决在写多读少的情况下,Change Buffer将修改了的数据页缓存,如果数据页一直没有被取,那么就可以继续在ChangeBuffer 中执行修改操作,也就是将多次修改的操作在Change Buffer合并了,只有需要被查询的时候再把多次修改的有效结果合并到Buffer Pool。

Adaptive Hash Index

自适应hash索引,用于优化对Buffer Pool数据的查询。MySQL的innoDB引擎中虽然没有直接支持hash索引,但是给我们提供了一个功能就是这个自适应hash索引。
因为前面我们讲到过,hash索引在进行等值匹配时,一般性能是要高于B+树的,因为hash索引一般只需要一次IO即可,而B+树,可能需 要几次匹配,所以hash索引的效率要高,但是hash索引又不适合做范围查询、模糊匹配等。
InnoDB存储引擎会监控对表上各索引页的查询,如果观察到在特定的条件下hash索引可以提升速度,则建立hash索引,称之为自适应hash索引。
自适应哈希索引,无需人工干预,是系统根据情况自动完成。

Log Buffer

日志缓冲区,用来保存要写入到磁盘中的log日志数据(redo log 、undo log),默认大小为 16MB,日志缓冲区的日志会定期刷新到磁盘中。如果需要更新、插入或删除许多行的事务,增加日志缓冲区的大小可以节省磁盘 I/O。

innodb_log_buffer_size:缓冲区大小
innodb_flush_log_at_trx_commit:日志刷新到磁盘时机,取值主要包含以下三个:

  • 1: 日志在每次事务提交时写入并刷新到磁盘,默认值。
  • 0: 每秒将日志写入并刷新到磁盘一次。
  • 2: 日志在每次事务提交后写入,并每秒刷新到磁盘一次。

磁盘结构

系统表空间 (System Tablespace)

系统表空间是更改缓冲区的存储区域。如果表是在系统表空间而不是每个表文件或通用表空间中创建 的,它也可能包含表和索引数据。(在MySQL5.x版本中还包含InnoDB数据字典、undolog等)

File-Per-Table Tablespaces

如果开启了innodb_file_per_table开关 ,则每个表的文件表空间包含单个InnoDB表的数据和索 引 ,并存储在文件系统上的单个数据文件中。

通用表空间 (General Tablespaces)

通用表空间,需要通过 CREATE TABLESPACE 语法创建通用表空间,在创建表时,可以指定该表空 间。

撤销表空间 (Undo Tablespaces)

MySQL实例在初始化时会自动创建两个默认的undo表空间(初始大小16M),用于存储undo log日志。

临时表空间 (Temporary Tablespaces)

InnoDB 使用会话临时表空间和全局临时表空间。存储用户创建的临时表等数据。

双写缓冲区(Doublewrite Buffer Files)

innoDB引擎将数据页从Buffer Pool刷新到磁盘前,先将数据页写入双写缓冲区文件中,便于系统异常时恢复数据。主要内容看这个double write

image-20230604170715099

Redo Log

重做日志,是用来实现事务的持久性。该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息都会存到该日志中, 用于在刷新脏页到磁盘时,发生错误时, 进行数据恢复使用。

image-20230604171037102

后台线程

前面我们介绍了InnoDB的内存结构,以及磁盘结构,那么内存中我们所更新的数据,又是如何到磁盘中的呢? 此时,就涉及到一组后台线程,接下来,就来介绍一些InnoDB中涉及到的后台线程。

Master Thread

核心后台线程,负责调度其他线程,还负责将缓冲池中的数据异步刷新到磁盘中, 保持数据的一致性, 还包括脏页的刷新、合并插入缓存、undo页的回收 。

IO Thread

在InnoDB存储引擎中大量使用了AIO来处理IO请求, 这样可以极大地提高数据库的性能,而IO Thread主要负责这些IO请求的回调。

image-20230604171315278

Purge Thead

主要用于回收事务已经提交了的undo log,在事务提交之后,undo log可能不用了,就用它来回收。

Page Cleaner Thead

协助 Master Thread 刷新脏页到磁盘的线程,它可以减轻 Master Thread 的工作压力,减少阻 塞。